Page 104 of 109 FirstFirst ... 45494102103104105106 ... LastLast
Results 1,031 to 1,040 of 1081

Thread: EAT MOAR TATERS! Huh? page 104

  1. #1031
    gopintos's Avatar
    gopintos is offline Senior Member
    Join Date
    Mar 2012
    Posts
    1,787
    Shop Now
    double wow!!
    65lbs gone and counting!!

    Fat 2 Fit - One Woman's Journey

  2. #1032
    pklopp's Avatar
    pklopp is offline Senior Member
    Join Date
    Nov 2010
    Location
    London
    Posts
    528
    Quote Originally Posted by Danielfire View Post
    The lactate is responsible for the burn isn't it? Or is that an urban myth?
    Short answer : Yup, myth based on misunderstanding of the biochemistry.

    Medium answer : Lactate is actually a buffer that helps to alleviate the burn, in fact. However, as it is always associated with the burn, it becomes an innocent bystander that is guilty solely by association.

    Long Answer :



    Glucose within cells is broken down via a sequence of 10 chemical reactions (glycolysis) that ultimately produces two pyruvate molecules. The reasons that a cell would want to do this are twofold : first, the production of each pyruvate molecule yields one ATP molecule ( the energy currency of the cell ), and second, this process is extremely rapid, so even though you don't get much net energy out of it, your energy production engine, though short on horsepower, has a really high rev limit.

    Pyruvate is in itself a valuable end product because it can be further processed in the mitochondria via the TCA cycle, where each pyruvate generates an additional ATP molecule. Other compounds are produced as well via the TCA cycle, including 4 NADH molecules and one FADH2. These last two compounds are very important because they feed the electron transport chain in mitochondria (ETC).

    For each NADH molecule, three protons are generated via the ETC. The final electron acceptor in this chain is oxygen. For each proton, the mitochondrion membrane proteins produces one ATP molecule. So, for every NADH molecule that we manage to pump through the ETC, we're going to get 3 ATP molecules. Since each pyruvate yields 4 NADH, we get 12 ATP per pyruvate, and since each glucose molecule generates 2 pyruvate molecules, we walk away from the ETC with 24 ATP molecules! Not bad for a day's work.

    Each FADH2 gets us 2 protons, and therefore 2 ATP molecules per pyruvate molecule. Net, net then, each glucose gets us 4 additional ATP molecules from FADH2 processing via the ETC.

    Totting up, if you've been keeping track, per glucose molecule we get 2 ATP from glycolysis, 2 ATP from the TCA cycle, and 28 ATP from the ETC. That's 30 ATP from the mitochondria, and 2 ATP from glycolysis, which kicked off the entire process in the first place.

    While there is an awful lot of energy derived from the ETC, there are drawbacks ... one, you must have available oxygen to accept the final electrons, and two, this process is much slower than glycolysis.

    So what happens in cases where there is insufficient oxygen to handle the electrons being generated via the ETC?

    Well, things start to look a bit like this (at about 4:40):



    The ATP production line gets overwhelmed, and instead of producing ATP and water, as is normally the case, it short circuits in an attempt to get faster, and produces much less ATP, and instead of water, you get reactive oxygen species like superoxide or hydrogen peroxide. The good thing about these is that they accept the electrons and quickly react with whatever is around them, thereby releasing the oxygen again to go back to the ETC. The drawback, of course, is also precisely that they react with whatever is around them, causing damage in the process and giving you that tell tale burn.

    Meanwhile, as the production line gets overwhelmed, pyruvate from glycolysis starts to build up. As the concentration of intra-cellular pyruvate start to increase due to its inability to enter the mitochondria for further processing, an alternative pathway starts to get invoked which converts the pyruvate into lactate. This helps to buffer the reactive oxygen species that are generated by the mitochondria, as well as being shunted to the liver for the regeneration of glucose.

    The really interesting thing about this is that once you start feeling the burn, your muscle cells are grossly inefficient in terms of glucose utilization, yielding about 2 ATP molecules per glucose molecule instead of the usual 32 ATP molecules. Or in other words, you now require roughly 10 times the glucose to maintain your activity level / energy output ... you are crushing glucose levels.

    If you do this repeatedly, your metabolism has no choice but to adapt or die, so you will adapt, and one of the adaptations will be that your cells will upregulate various oxygen transport proteins, making those cells that adapt in this way much better at sucking all the available oxygen from your blood stream!

    -PK
    Last edited by pklopp; 12-06-2012 at 12:25 PM.
    My blog : cogitoergoedo.com

    Interested in Intermittent Fasting? This might help: part 1, part 2, part 3.

  3. #1033
    otzi's Avatar
    otzi Guest

  4. #1034
    Danielfire's Avatar
    Danielfire is offline Senior Member
    Join Date
    Jun 2012
    Location
    Australia - Sydney
    Posts
    258
    Quote Originally Posted by pklopp View Post
    Short answer : Yup, myth based on misunderstanding of the biochemistry.

    Medium answer : Lactate is actually a buffer that helps to alleviate the burn, in fact. However, as it is always associated with the burn, it becomes an innocent bystander that is guilty solely by association.

    Long Answer :



    Glucose within cells is broken down via a sequence of 10 chemical reactions (glycolysis) that ultimately produces two pyruvate molecules. The reasons that a cell would want to do this are twofold : first, the production of each pyruvate molecule yields one ATP molecule ( the energy currency of the cell ), and second, this process is extremely rapid, so even though you don't get much net energy out of it, your energy production engine, though short on horsepower, has a really high rev limit.

    Pyruvate is in itself a valuable end product because it can be further processed in the mitochondria via the TCA cycle, where each pyruvate generates an additional ATP molecule. Other compounds are produced as well via the TCA cycle, including 4 NADH molecules and one FADH2. These last two compounds are very important because they feed the electron transport chain in mitochondria (ETC).

    For each NADH molecule, three protons are generated via the ETC. The final electron acceptor in this chain is oxygen. For each proton, the mitochondrion membrane proteins produces one ATP molecule. So, for every NADH molecule that we manage to pump through the ETC, we're going to get 3 ATP molecules. Since each pyruvate yields 4 NADH, we get 12 ATP per pyruvate, and since each glucose molecule generates 2 pyruvate molecules, we walk away from the ETC with 24 ATP molecules! Not bad for a day's work.

    Each FADH2 gets us 2 protons, and therefore 2 ATP molecules per pyruvate molecule. Net, net then, each glucose gets us 4 additional ATP molecules from FADH2 processing via the ETC.

    Totting up, if you've been keeping track, per glucose molecule we get 2 ATP from glycolysis, 2 ATP from the TCA cycle, and 28 ATP from the ETC. That's 30 ATP from the mitochondria, and 2 ATP from glycolysis, which kicked off the entire process in the first place.

    While there is an awful lot of energy derived from the ETC, there are drawbacks ... one, you must have available oxygen to accept the final electrons, and two, this process is much slower than glycolysis.

    So what happens in cases where there is insufficient oxygen to handle the electrons being generated via the ETC?

    Well, things start to look a bit like this (at about 4:40):



    The ATP production line gets overwhelmed, and instead of producing ATP and water, as is normally the case, it short circuits in an attempt to get faster, and produces much less ATP, and instead of water, you get reactive oxygen species like superoxide or hydrogen peroxide. The good thing about these is that they accept the electrons and quickly react with whatever is around them, thereby releasing the oxygen again to go back to the ETC. The drawback, of course, is also precisely that they react with whatever is around them, causing damage in the process and giving you that tell tale burn.

    Meanwhile, as the production line gets overwhelmed, pyruvate from glycolysis starts to build up. As the concentration of intra-cellular pyruvate start to increase due to its inability to enter the mitochondria for further processing, an alternative pathway starts to get invoked which converts the pyruvate into lactate. This helps to buffer the reactive oxygen species that are generated by the mitochondria, as well as being shunted to the liver for the regeneration of glucose.

    The really interesting thing about this is that once you start feeling the burn, your muscle cells are grossly inefficient in terms of glucose utilization, yielding about 2 ATP molecules per glucose molecule instead of the usual 32 ATP molecules. Or in other words, you now require roughly 10 times the glucose to maintain your activity level / energy output ... you are crushing glucose levels.

    If you do this repeatedly, your metabolism has no choice but to adapt or die, so you will adapt, and one of the adaptations will be that your cells will upregulate various oxygen transport proteins, making those cells that adapt in this way much better at sucking all the available oxygen from your blood stream!

    -PK
    Thanks bro, that makes sense. Appreciate the time you spent to explain it.

  5. #1035
    otzi's Avatar
    otzi Guest
    I almost started a new thread, but wanted to put it here for posterity's sake...

    Paul Jaminet of the Perfect Health Diet has been talking about the Potato Diet. He loves the idea of 'safe starches' and wants us to include up to a pound of starch a day.

    On the "Potato Diet", he specifically mentioned 'Butyrate'. I had never heard that term before and did some digging.

    Butyrate is formed in the large intestine from resistant starch. Butyrate is needed to feed colon (large intestine) cells and the microflora living these. It is known to eliminate inflammation in the colon and the whole body! see: Whole Health Source: Butyric Acid: an Ancient Controller of Metabolism, Inflammation and Stress Resistance

    Well, my point is, the normal paleo template and even the Primal Blueprint has taken most reistant starches out of the equation, possibly leaving us with a missing element to out health. Resistant starch - Wikipedia, the free encyclopedia

    Resistant Starches are classified according to type:

    RS1 Physically inaccessible or digestible resistant starch, such as that found in seeds or legumes and unprocessed whole grains

    RS2 Resistant starch that occurs in its natural granular form, such as uncooked potato, green banana flour and high amylose corn

    RS3 Resistant starch that is formed when starch-containing foods are cooked and cooled such as in legumes,[2] bread, cornflakes and cooked-and-chilled potatoes, pasta salad or sushi rice. The process of cooking out the starch and cooling it is called retrogradation.

    RS4 Starches that have been chemically modified to resist digestion. This type of resistant starches can have a wide variety of structures and are not found in nature.

    See any patterns here? When we quit eating bread, grains, and legumes, we are removing a huge source of resistant starch! Notice anything on the list that we keep talking about? Cold potatoes!

    Apparently one of the best ways to get resistant starch into the gut is to eat cooked and chilled potatoes (or rice). The chilling changes the starch (retrogradation) and turns it into a type of resistant starch that can travel through your digestive system and end up in the colon where it is converted to butyrate, a short-chain fatty acid. How cool is that?!

    Now, many may argue that butyrate, or butyric acid is found in butter, but this is not the same as the butyrate formed by the gut from digesting resistant starch...eaten butyric acid gets digested early on--the good stuff is produced and used in the colon.
    Last edited by otzi; 12-20-2012 at 08:58 AM.

  6. #1036
    Paleobird's Avatar
    Paleobird Guest
    But Otzi, from the above article on Butyrate Jaminet also says this ;
    Sources of Butyrate

    There are two main ways to get butyrate and other short-chain fatty acids. The first is to eat fiber and let your intestinal bacteria do the rest. Whole plant foods such as sweet potatoes, properly prepared whole grains, beans, vegetables, fruit and nuts are good sources of fiber.

    Butyrate also occurs in significant amounts in food. What foods contain butyrate? Hmm, I wonder where the name BUTYR-ate came from? Butter perhaps? Butter is 3-4 percent butyrate, the richest known source. But everyone knows butter is bad for you, right?

    After thinking about it, I've decided that butyrate must have been a principal component of Dr. Weston Price's legendary butter oil. Price used this oil in conjunction with high-vitamin cod liver oil to heal tooth decay and a number of other ailments in his patients. The method he used to produce it would have concentrated fats with a low melting temperature, including butyrate, in addition to vitamin K2*****. Thus, the combination of high-vitamin cod liver oil and butter oil would have provided a potent cocktail of fat-soluble vitamins (A, D3, K2), omega-3 fatty acids and butyrate. It's no wonder it was so effective in his patients.
    Sounds to me like veggies with butter on top would work just fine.

    Also that study he cites was on rats being fed a mix of lard and soy oil. It is talking about counteracting the inflammatory effects of this "high fat diet". It would be more interesting without the soy involved. There would probably a lot less inflammation involved in the first place.
    Last edited by Paleobird; 12-19-2012 at 05:10 PM.

  7. #1037
    pklopp's Avatar
    pklopp is offline Senior Member
    Join Date
    Nov 2010
    Location
    London
    Posts
    528
    Quote Originally Posted by otzi View Post
    I almost started a new thread, but wanted to put it here for posterity's sake...

    Paul Jaminet of the Perfect Health Diet has been talking about the Potato Diet. He loves the idea of 'safe starches' and wants us to include up to a pound of starch a day.

    On the "Potato Diet", he specifically mentioned 'Butyrate'. I had never heard that term before and did some digging.

    Butyrate is formed in the large intestine from resistant starch. Butyrate is needed to feed colon (large intestine) cells and the microflora living these. It is known to eliminate inflammation in the colon and the whole body! see: Whole Health Source: Butyric Acid: an Ancient Controller of Metabolism, Inflammation and Stress Resistance

    Well, my point is, the normal paleo template and even the Primal Blueprint has taken most reistant starches out of the equation, possibly leaving us with a missing element to out health. Resistant starch - Wikipedia, the free encyclopedia

    Resistant Starches are classified according to type:

    RS1 Physically inaccessible or digestible resistant starch, such as that found in seeds or legumes and unprocessed whole grains

    RS2 Resistant starch that occurs in its natural granular form, such as uncooked potato, green banana flour and high amylose corn

    RS3 Resistant starch that is formed when starch-containing foods are cooked and cooled such as in legumes,[2] bread, cornflakes and cooked-and-chilled potatoes, pasta salad or sushi rice. The process of cooking out the starch and cooling it is called retrogradation.

    RS4 Starches that have been chemically modified to resist digestion. This type of resistant starches can have a wide variety of structures and are not found in nature.

    See any patterns here? When we quit eating bread, grains, and legumes, we are removing a huge source of resistant starch! Notice anything on the list that we keep talking about? Cold potatoes!

    Apparently one of the best ways to get resistant starch into the gut is to eat cooked and chilled potatoes (or rice). The chilling changes the starch (retrogradation) and turns it into a type of resistant starch that can travel through your digestive system and end up in the colon where it is converted to butyrate, a short-chain fatty acid. How cool is that?!
    Butyrate / butyric acid actually gets its name from the substance from which it was first isolated ... butter. Much like oleic acid got its name from olive oil and stearic acid from beef ( steers ) ... presumably beefic acid sounded a bit too cartoonish.

    If it's butyric acid that you want, then I suggest bypassing the intermediate and unnecessary bacterial synthesis stage and eat it directly in all of its buttery splendour. Further, the gut microbiota here is a bit of a red herring, because although they do break down resistant starch, what they do with it is produce fatty acids like butyrate which the host then absorbs.

    So what we have here is a symbiotic relationship where the gut microbiota flourish because you are providing an environment where their preferred nutritional substrate, resistant starch, is plentiful, and they, in turn, provide you with a fatty acid. That's fine, as far as it goes, but you would need to provide an argument as to why having a large population of bacteria in your gut that subsist on resistant starches is in and of itself a good thing. Note that this is different from arguing that butyric acid is in and of itself a good thing.

    Getting back to butyric acid, in the Perfect Health Diet, the Jaminets argue that in nature, all diets are high fat diets basically due to this ability of gut microbita to synthesize fatty acids from resistant starches. So, a strictly vegetarian diet of the sort eaten by gorillas, for example, is a high fat diet, contrary to what the average person would assume. Of course, gorillas are specifically adapted for this by having a very large hind gut to host the relatively massive amounts of bacteria needed to ferment these resistant starches into fats.

    If you were, by some genetic quirk, equipped with a large hindgut for bacterial fatty acid fermentation, you would certainly know it due to the massively protruding belly that you would have even in the face of ridiculously low body fat percentages ... think bodybuilders with paper thin skin and massive guts for a visual. This lucky fellow might just be a hindgut fermenter:



    Further, eating resistant starch in order to yield fatty acids is a grossly inefficient way to extract energy which is why gorillas spend an inordinately large proportion of their days eating ... if memory serves it is on the order of 5 hours a day or so.

    Bottom line, eat moar butter if moar butyric acid is what you want.

    -PK
    Last edited by pklopp; 12-20-2012 at 08:26 AM.
    My blog : cogitoergoedo.com

    Interested in Intermittent Fasting? This might help: part 1, part 2, part 3.

  8. #1038
    Paleobird's Avatar
    Paleobird Guest
    Thanks PK. I just tried to say the exact same thing on the other thread he has going on this topic about Resistant Starch but you said it more eloquently.

  9. #1039
    Danielfire's Avatar
    Danielfire is offline Senior Member
    Join Date
    Jun 2012
    Location
    Australia - Sydney
    Posts
    258
    Interesting pklopp, thanks.

    Disturbing pic though, that guy must be very frustrated with his efforts.

  10. #1040
    Xexist's Avatar
    Xexist is offline Junior Member
    Join Date
    Feb 2013
    Location
    Edmonton
    Posts
    6
    Hate to bump such a long and dormant thread, but this is what brought me to this forum so it is what it is. Ive spent the last 3 days or so reading this thread and figured it coudlnt hurt to give this a try.

    Is anyone else still doing this, or at least falling back on it from time to time?

    One question I have is just how strict you have to be on the no fat. For example for like a tsp of olive oil (or was it tbsp?) there was 9g of fat, so I get that butter/margerine/oil is bad and a little self defeating on the no/low fat of all potatoes. What about smaller amounts? 1 or 2 g of fat from coffee creamer, or from a 2 second spray of PAM or something similar. NO fat sour cream (in really really small doses), or no fat greek yogurt?

    I realize the point is to avoid these things as much as possible, but how harmful is adding just a tiny bit of items like this to improve palatability?

    I love potatoes so I thought this would be a piece of cake for me but after 1 day, let me tell you It has been a challenge. Vinegar, hot sauce both saved this for me.

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •